Question	Answer	Ma	rks
1(a)	number of moles of NaNO ₃ used: $3.40/85 = 0.04(00)$ (mol) OR $4.(00) \times 10^{-2}$ (mol); number of moles of O ₂ formed: $0.04/2 = 0.02(00)$ (mol) OR $2.(00) \times 10^{-2}$ (mol); volume of O ₂ formed: $0.02 \times 24 = 0.48$ (dm ³);		3
(b)(i)	(a substance which is) a proton/H⁺/hydrogen ion acceptor;		1
(b)(ii)	$\begin{array}{rcl} Mg(s) \ + \ 2H_2O(I) \ \rightarrow \ Mg(OH)_2(aq) \ + \ H_2(g) \\ Mg(OH)_2; \ rest \ of \ equation; \end{array}$		2
(c)	 M1 add a <i>named</i> acid, e.g. HC<i>l</i> and a named alkali, e.g. NaOH; M2 Al₂O₃ will react with/neutralises both reagents; M3 and so it will dissolve into the reagent/form a solution; 	1 1 1	3
(d)(i)	cov		1
(d)(ii)	any 2 from: high melting point/high boiling point; poor conductor (of electricity); hard; insoluble;		2
(e)(i)	M1 (electrostatic) <u>attraction;</u> M2 between <u>oppositely charged ions;</u>	1 1	2
(e)(ii)	₃ (PO ₄) ₂ ;		1

Question	Answer	Ма	rks
(f)(i)	 S(s) + 2F₂ (g) SF₄ (g) M1 exothermic mark: horizontal product energy line at lower energy than that of reactant energy line; M2 label of product mark: SF₄; M3 correct direction of vertical heat of reaction arrow: arrow must start level with reactant energy and finish level with product energy and must have only one (correct) arrow-head; 	1 1 1	3
(f)(ii)	M1 bond energy of $2F_2$: 2 × F–F = 2 × 160 = 320 (kJ/mol); M2 bond energy of all bonds in SF ₄ : 780 + 320 = 1100 (kJ/mol); M3 calculated bond energy of SF ₄ divided by 4: 1100/4 = 275 (kJ/mol);	1 1 1	3
(g)(i)	bacteria;		1
(g)(ii)	name of compound: cobalt(II) chloride; from: blue; to: pink;	1 1 1	3
h)(i)	it has a complete outer shell/a full outer shell/8 electrons in the outer shell;		1
(h)(ii)	lamps;		1

Question	Answer	Marks
2(a)(i)	a reaction whose rate is influenced by light/reaction which occurs in presence of light;	1
(a)(ii)	CH ₃ CHC <i>I</i> CH ₃ ;	1
(a)(iii)	(both have) same molecular formula; different structural formula or structure;	2
(b)	M1 bonds breaking = $(8 \times 412) + (2 \times 348) + 242 = 4234$; M2 bonds forming = $(7 \times 412) + (2 \times 348) + 338 + 431 = 4349$; M3 4234 - 4349 = -115 and exothermic;	3
(c)(i)	$CH_3CH_2CH_2Cl + NaOH \rightarrow CH_3CH_2CH_2Cl + NaCl NaCl as product;rest of equation;$	2
(c)(ii)	p CH ₂ =CHCH ₃ ;	2
(c)(iii)	p acid;	1
(d)(i)		1
4(d)ii)		1
(d)(iii)	moles of CH ₃ CH ₂ CH ₂ OH = 0.1; moles of HCOOH = 0.087 (0.09) and limiting reagent is methanoic acid;	2
(d)(iv)	$88 \times$ (mol of limiting reagent in 4(d)(iii)); expected answer: $88 \times 0.087 = 7.65$ g;	1

3	(a	faster reaction rate (1) higher collision rate (1) greater yield or favour RHS (1) pressure favours products because it has lower volume/fewer product molecules (1)	[4]
	(b)	higher temperature favour endothermic reaction (1) this is the back reaction/left hand side/reactants (1) reduce yield (1)	[3]
	(c)	greater surface area (1)	[1]
		 (ii) increase reaction rate (1) can use a lower temperature to have an economic rate (1) and not decrease yield (by increasing temperature). 	[2]
	(d)	lower the temperature (1) only ammonia will liquefy (1) OR add water (1) only ammonia will dissolve (1) OR increase pressure (1) only ammonia will liquefy (1)	[2]
	(e)	second line $+3 \times 155 = +465$ third line $-3 \times 280 = (-)840$ fourth line $-3 \times 565 = (-)1695$ all three correct (2) two correct (1)	
		1170 + 465 = 1635 840 + 1695 = 2535 both numerically correct (1) exothermic reaction with some reasoning (1)	[4]

[Total: 16]

(a	(i)	any Group 1 metal ACCEPT: lithium	[1]
	(ii)	$\begin{array}{l} 2Pb(NO_3)_2 \ \rightarrow \ 2\mathbf{PbO} \ + \ 4NO_2 \ + \ O_2 \\ PbO \ [1] \\ \textbf{COND} \ balancing \ [1] \end{array}$	[2]
	(iii)	the metal in a (i) is more reactive than lead	[1]
		OR has stronger (ionic) bonding	[1]
(b)	(i)	speed / rate of forward reaction = speed / rate of back reaction OR macroscopic properties do not change / constant (with time)	[1]
	(ii)	goes darker OR goes brown	[1]
		COND lower pressure favours side with more moles COND this is NO ₂ side OR reactant side OR goes left	[1] [1]
	(iii)	exothermic	[1]
		low temperatures favour the exothermic reaction ${f or}$ low temperatures moves equilibrium to right / product side / towards N_2O_4	[1]
	(iv)	forward reaction is bond forming	[1]

4